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1. Introduction.

The finite element method has become the main tool in computational

mechanics. The MAKABASE-[1I, [21 contains about 20,000 references on finite Z

element and 2000 boundary element technology. Recently the new direction in S.

the finite element theory and practice appeared, the p and h-p versions,

which utilize high degree of elements. About 3 - 4 dozen references about

p and h-p versions are available, all of them related to the elliptic prob-

lems. For the survey of today's state of the art, we refer to e.g. 
[3]. |

The present paper addresses the basic problems of the p-version for the

parabolic equation with both variables, x and t discreted via p-version.

It concentrates on the case when in the time variables only one interval is

used. The paper gives the error estimates and presents some numerical

aspects. i- restrict themselves to the basic features of the method. Various

generalizations will be presented in forthcoming papers.

2. The p-version for the initial value problem for an ordinary 
differential

equation

2.1. Preliminaries and problem formulation.

Let I = (-1,1), I = [-1,1], t E I, X = L I) be the usual space
2

furnished with 
the norm

(2.1) lull = [ u2dt]1/2

Let

= {v E CW(i) I v(l) 0},

where CM(I) is the usual space of functions with all continuous derivatives

LKI %
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on I. For any A > 0 and v e we define "

(2.2) lIVIIy = I- k+AvIIx

where we denoted v Let Y be the completion of with respect to
if-A

t h e n o r m 11' 11y A *

Lemma 2.1. Let v e and

(2.3) 2lv II v2 + 2lXv1l 2

zvI - 1 1x ivfx,

Then

( 2 .4 ) ll v II _ lA v l < V 2-llv l z .A

Proof. We have

1 v 2 2v

11V1y 2A + Av] 2dt = + (Av)2] dt-2 vdt

2 d V 2 2(t))dt-1 -1z; -1

1

= 11II 2 Z + v2 ( -l) >_. II vl z A,

On the other hand

Vll 2 -< 2 111 I2 +llXvll -< 2112vl2

Lemma 2.1 Iimplies that the spaces YA and Zx  are equivalent.-.'

A A .

On XxY , U X, V YA we define the bilinear form

2%
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J - - -- - -- - .1 -ruwv -A ~q;- A - - . l-F

(2.5) B (u,v) = - + AvI dt.
-1 A&

Further, let F e Y' be a linear !?unctional on Y".

We will define now

Problem P Given F E Y' find u E X such that

B (Uov) = F(v) V v e Y
A0

Theorem 2.2. Problem P A has a unique solution u0 e X and Iu0Ilx  IIFlIy.

A 0 A

Proof. By Schwarz inequality

(2.6a) IB (u v)l < IlllxllvllyX-

Given u E X, then there is v E YA such that

+ ?v = u.

Obviously ljvjjy = lIIu. This yields immediately

(2.6b) inf sup IB (uv)l >_ 1
uEX V=YA

x

and analogously

(2.6c) inf sup lB C u, v) I 1
veY uEX

A
lv1ly =1 !lUll <1

Now Theorem 2.2 follows immediately from Theorem 5.2.1 of [4]. N
Let us show that the solution of the problem PA is a weak solution u 0

of the initial value problem '1

N N.
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. -v -,

u 0
(2. 7a) - Au0 = f

(2.7b) u (-1) = aA

r

(2.7c) F(v) = J fvdt+av(-1).
J0

-1

To prove it, it suffices to show that if f E C M() and u C E I) solves

(2.7a,b) then u0  is the solution of the problem "

We indeed have for any v E

1- 1

B (uo, = Z+Au vdt+u (-l)v(-l)= fv dt + av(-1).
-1 -

This shows that any classical solution (i.e., a solution belonging to

CI)) is also the solution of the problem P with F given by (2.7c) and
A

hence the problem P is a weak formulation of (2.7a,b).
A

We mention that because of Lemma 2.1 and the Sobolev imbedding theorem

0 Y' 1~)cnb
vr C---C I) and hence F(v) = fvdt +av(-1) E Y'. F(v) can be

-1

obviously identified with a function from H- (I). We note that u E X has

in general no trace in t = -1, but we still have an initial value problem.

The Initial condition Is now of the type of the natural boundary condition and

not the essential one.

2.2. The p-version of the finite element method for the problem PA"
A*t

Let q 2 1, integer

(2.8) S = Sq {u E X I u is a polynomial of degree q-01

(2.9) V )q = {v E I v is a polynomial of degree q}.

4
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Theorem 2.3.

i) Let u E S, v E V, then

(2.10) lB(u, v)l -< lulvlA x Y

ii)I

(2.11)1 -1/2

(2.11) d (q) inf sup IBx(u,v)l
A fvE ) q  usq- 1 

.

lIIvll =1 lHull <l
A|

iii) Let u E S, u 0 0, then

(2. 12) sup IBA(u,v)I > 0.

VE ) w w

i1vII =1
A

Proof.
p

i) (2.10) follows from (2.6a).

ii) Let P k = 0,1 ,... be the Legendre polynomials. Then v E V can

be written in the form

q

(2.13a) 
v = 

l.tk^k

k=O €

with the constraint

q

(2.13b) 0 = v(l) _.

k=O

Let n 1 be the X-orthogonal projection operator of X onto S and let
q-.

z =it w,

w=--+Av, V E V.

Then for

Nr,



Z A - 1+ and z = q-1'v ,

we have

q-1

z ES and z= Lk~ k

k=O

Then
1 

.

B (z, V) + =+ vd

J - -1 -

Because

1 1

z vdt = 2Jxvdt-1 - -

and

21 vvdt "-v 2 ( I

JJ

we see that

B, (z ,v ) >: ,v l, 2  l d .

x~d + A zl.t

-1

Further v(1) =0 and therefore from (2, 13b)

q-1

-f3q = k

k--O

and
-1 o2

B k (2k+ 1  tk

q 2k+- 2 2 2k+l"

k=0

6



Hence

2 2 q-1 2 q-1 2
S23 k2 2 /3k 2-" -k11II, X 2+ < [1+ q ]< 2q I

-2k+ I 2(2q+i)] Z 2k 1 - 2k+ 1-
k=O k=O k=O

and therefore ".

1 q-1 2 2 > 12
Cxz,v) iii II Ix ZlVdt = + ~llx+ 2k+1 -A 1  '.IIV

-11
- I k=O"-"

1 2
_iq[y (by Lemma 2.1). "

A

Realizing that LzII2 = B (z v), (2.11) follows.X X

iii) Given u E Sq let v(t) f udt. Then v E §)q and
Jt p

(2.14) B (uv) = -Avv dt - Iu11 > 0,

and (2.12) follows.

We can now define the p-version of the finite element method for the

problem P: Given F E Y and q 2- 1, integer, find U S q -  such that

(2.15) B U v) =F(v) V V E .
A q'

Theorem 2.3, together with Theorem 6.2.1 of [4] yields

Theorem 2.4. There is a unique uq satisfying (2.15). If u0 E X is the .

exact solution of the problem PA? then

1/2 2'
(2.16) IluO - UqIX < [1+2q I] inf juOwI~x. -

WES

The p-version of the finite element method reduces to the solution of a 0

system of linear equations. Let P Ct) be the Legendre polynomials, then we
k

7



can write

q-1

U q X c Zk Pk

k=O

and

q-1

V = k (Pk+1-P k E V.
k=O

Hence (2.15) reduces to a system of linear equations for k

q-1

i B(Pk P -P.) = F(P -P ),j = 0,...,q -.
k A k' j+1 j j+l j

k=O

Of course, we can use another basis function of S and V, too.

-1/2If (2.11) is optimal, i.e., d(q) < Cq , then (see [5]) there

exists u E X, which is solution of the problem PA for certain F E Y',

such that the finite element solution diverges, i.e.

Hu- uqlx--e as q-.

On the other hand, for a restrictive class 7 of the solutions u of the

problem P., we have

mlu-uq1x - C inf Iju-wI x
wES

with C independent of q or growing with q much more slowly than q1/2

In the next sections we will address more of these aspects.

2.3. The optimality of (2.11).

Let

q-1

u = L kk
k=O

'



-q --- 1. AP ...-.

q q-1

v = NP .3q= -V,-
L Zkk' q Zk
k=O k=O 5

Then '.

q-1 2 2

= x 2k+ 1
k=O !

q q 1'.,

2 = j = O k = O - 12 2 Xk'1 2 1 1
IIvIYA L2t[ 2k+ 2q+1 L k

and

q q-1 1 

E- c 3 i P f~Pk dt q-1i(xf
(2.17) B (u,v )  j=O k=O - k +AZ 2 .fJ.,

z= 2j+li

j-I

Obviously

q-1 -1j3 1/2R = k sup 2 /Jl 2 2 ..

R= 2x ,."- ,

A sup2j1j(j1

q - 2 
4,j 

=E 2/(2j+1)=1 -

j=O a

Let
q -1,,

(2.18) 1nf A2 Z 2 2
( T2jil) -+I

j=O

where inf is taken over 1 such that
J

1 131 2 1!
2I~ 2"j 2 r -%

(2.19) Al? 2j+2_ 3 21 1.

Se l ec t

K p
(2.20) 13= (2j+1) j = 0. q -1

9
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W.,,

with K determined so that (2.19) holds. Then

3 -2 3

C1q K < C2 q

with C1,C2  independent of q and -

Q _5Cq I

where C is independent of q. Assuming that (2.19) holds, it is obvious .5

that there is a function 0 < R (x) < w, 0 < x < co such that
1

llvll -2 : R (q) 1 + I

yA 1 AX

Further there is a function 0 < R2 x) < c, 0 < x < w such that

sup IB (u,v) 1 2 (q) - R.

q-12 %
E2.2/(2j+1)= 1  -

j=03

Hence

1 +C1/2 -1/2 p 1(_)-1/2)
d (q)= inf sup IB (u,v)l _< (R2 (q)1 Cl q )(l+ -- )+ 1/2'S

l1II =1 IIull < 2

,...

and we have proved

C- 1/2ql/2 2  1/2,
Theorem 2.5. If A > q1  2 (q), A > (q), then

d x(q) 5 4CI1/2 q-1/2  ,

where C is the same constant as in (2.20), independent of q.

We see that for A which is large in comparison with q the estimate .5

(2.11) is optimal, i.e.,

lim sup d (q) _< Cq-

10
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It does not mean that for fixed A and q, dA(q) is small. In fact we can

expect that dA(q) achieves minimum for some finite q0  depending on A.

The constant dA(q) can be computed numerically. Let u E S, V E V,

q

(2.21) u(t) = P Ct),j , j-l
J=l

and

q

(2.22) v(t) =L 9> 1 J(t)'

j=1

1P-t
where W= -= -t (t) = J-1(n)dn, j = 2,3,..., q, and P(t), j = 0,1,...

t

are normalized Legendre polynomials of degree j. Then

B A(u,v) = 3 TAa,

where

a1  b1

c2  a2 b2  0

22

(2.23) A =+

c aq q

with

A2+
SA 

a.-- 1' i=1,2.... ,q

b, -A
-2 q

b. = (2i-l)(2i+l) i 12. -

ll ,S



C. = , i =2 ..... q
,/(2i-1)(2i+3)

aT--[1' °q T

= [131 .... I q]T

2 TIlulx Q T a

11vi2 0T C3
yA

where

'd1  e1  fl"
ee 1 d 2 e 2 f 2 0

f ed e f

1 e2  d3  e3  f 3

~C=

fq-4 eq-3 dq-2 eq-2 fq-2

fq-3 eq-2 dq-1 eq-1

f e d
Lq-2 q-1 q j

2 4;2

d_ 34-6A 2+4A2

3 3

A (2i+1)(2i-3)' i = 2,... q

A2
e, = - -_.

e. =0, i=2 ..... ,q- 1

2

f = XA

f. = -2, i 2 .... q-2.
V(2i+3) (2i-1) (2i+1)

12



Now,

dA(q) = inf T AAT 1 inf TAA]
T cf: (T AA 1)1/2 1T J

',i

2e

and hence d (q) is the smallest eigenvalue of the problem
A

T 2~qC3
AA (3 = qC

Table 2.1 presents the values of dA(q) for various q and A. Figures

2.1 and 2.2 present dA(q) in the dependence on q and A. We see that for

any fixed A, dA(q) first decreases with q and then increases, for fixed

q, dX(q) decreases with A and
dA (q 1 q) 1/2

A-m dA 2(q2 q 2

The detailed theoretical analysis of the structure of d (q) is not

available.

1 3 5 10 20 25 40 50 100

3 .98680 .79701 .71727 .67610 .66514 .66381 .66237 .66203 .66159

5 .99506 .82899 .67937 .58675 .56138 .55829 .55493 .55415 .55312

10 .99875 .92492 .74648 .51874 .44260 .43325 .42311 .42076 .41764

15 .99944 .96118 .82747 .53586 .39710 .37941 .36024 .35582 .34994

20 .99969 .97678 .8784F .58089 .38175 .35411 .32406 .31715 .30796

25 .99980 .98468 .91095 .62875 .38291 .34423 .30172 .29194 .27897

30 .99986 .98918 .93257 .67097 .39403 .34403 .28781 .27482 .25763

40 .99992 .99381 .95813 .73776 .4308S .36091 .27550 .25519 .22834

50 .99995 .99601 .97179 .78735 .47194 .38901 .27593 .24743 .20947

100 .99999 .99899 .99240 .910371.62570 .52393 .34373 .28026 .17611

Table 2.1. The values of d (q).

13
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Figure 2.1. dA()in dependence on A with the polynomial degree q fixed.
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Figure 2. 2. dA(q) in dependence on the polynomial degree q with fixed A.
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2.4. The set of perfect solutions.

We have shown in section 2.2 and 2.3 that there are solutions U E X

such that

II U-Uq x _I

(2.25) i Ju-Ux R (u)

Wes

can be arbitrarily large provided that q and A are sufficiently large. On

the other hand, we have proven that

R (u) < Cq 1

where C is independent of q and u. Let V(x) < w, 1 < x < w be a non-

decreasing function such that ((x) as x- Then if D > 0 is arbi-
1/2x

trary, there exists u E X such that

sup Rq, (u)p- (q) > D.
q,.

Hence we can ask to characterize the set 1(() c X depending on V such that

-I-

sup sup Rq A(u)1 (q) < c.
uE " q,A

The set T(V) will be called the set of V-perfect solutions. An especially

important case is '(V) for V = 1. It is not easy to give a precise charac-

terization of the set T(V) although its importance is obvious. We will give

only some sufficient conditions and based upon numerical experiments we will

also formulate a conjecture.

Let u E X, u = a P' ThenLetJ
j=O

inf lu-wlx = lJu- uII X, .

wES

where

15
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q-1

u =z jPj

J=O

Hlu- U11 2 a 2

j=q

Let u be the _.nite element solution defined by (2.15) and
q

U-U = U-U-Z

with

z=u -u S.
q

Then

B(z,v) = BA (u q-u+u-u,v) = B A(u-u,v) V v E V.

q

For v = k

k=O ,

1A

B (z,v) = (u-u)- -+v dt =A a-
A A q q*

-1

Because (by Lemma 2.1)

2 2 2 2 2A2-q < A211vll) < IlvlIyk

we get

IB A(z,v)l < Iqlivlly A

and hence using (2.11)

IIZll <5 21oc Iq1/  :

x q

Thus I

16

'.i



u -u 1q X -M 11j + 2 1 qf- w I ll llx >+ 2  q -q -1 /2
.

w cS [ E c 2)

(J~q

which leads to the following

Theorem 2.6. Let V(x) be a nondecreasing function, u e X, u = k k and

k=O
[a I q I 1l/2 ."'-

(2.26) sup 1+2 -- 1 (q) < w.
002l1/2]

qj=q

Then

U E X'(YD).

S

Consider some concrete examples:

P = C = 4 M-t)i) u1  {' = 5Po(t) -4 -

0 Z V2kiT(2k-)(2k+3)
and hence u1  is a V-perfect solution for V = 1.

ii) Let 0 < p < 1 then

u2 - k - p

l-2xp+P k=O 2k+1

In this case Theorem 2.6 gives no indication whether u2  is a V-perfect

solution for any V (with exception of course of V = x1/2

The observation about perfect solutions Is practically important.

Theorem 2.6 shows that If the solution Is unsmooth, the finite element

solution has essentially the same accuracy as the best approximation also for

large q which is needed to get an acceptable accuracy. If the solution is

smooth then the acceptable accuracy is achieved for small q and hence the 6

factor qi1/2 is not Important.

17



2.5. A numerical-example.

Let us consider the problem

UI
(2.27a) -+AU = A

A

(2.27b) u(-l) = 0.

The solution u is

2
u(t) = 1-e

-x (t+
l )

Assume that the basis functions of S and V are given by (2.21) and

(2.22), respectively. Then the p-version reduces to the solution of linear

system

AarAo F P

where A is given by (2.23) and

[A, 2A T
F = [A- 0... .0]

The values of the function Rq,L(u) given by (2.25) are given in the Table

2.2. Computations were performed in double precision. Figure 2.3 presents

Rq (u) in dependence on the polynomial degree q for various A. The shown

slope is the theoretical one based on Theorem 2.4 (p = 0.5).

18%
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1Qt.R~xnTW1 r Pr IN -N1 V T

1 3 5 10 20 25 40 50 100

3 1.01317 1.14719 1.11079 1.03955 1.01089 1.00705 1.00279 1.00179 1.00045

5 1.00493 1.14853 1.19126 1.09510 1.02909 1.01910 1.00767 1.00494 1.00125

10 1.00000 1.07101 1.20361 1.23124 1. 10008 1.06915 1.02947 1.01926 1.00495

15 1.00000 1.03765 1.14908 1.28929 1.18268 1.13488 1.06241 1.04165 1.01103

20 1.00000 1.00018 1.10947 1.28816 1.25360 1.20130 1.10258 1.07027 1.01934

25 1.00000 1.00000 1.08241 1.26821 1.30273 1.25826 1.14601 1. 10308 1.02970

30 1.00000 1.00000 1.02000 1.24639 1.33032 1.30113 1.18923 1.13803 1.04190

40 1.00000 1.00000 1.00000 1.20763 1.34308 1.34560 1.26537 1.20737 1.07083

50 1.00000 1.00000 1.00000 1.17530 1.33333 1.35521 1.32000 1.26778 1.10408

100 1.00000 1.00000 1.00000 1.00000 1.26922 1.31420 1.37144 1.38065 1.27263

Table 2.2. The values of Rq,xt(u) for various q and A.

1.35 ,
- LINE OF MAX'S /a

A2 5

. ............ ,. ,

1.00 L. %-
1 2 3 456789K 20 30 4050 %

DEGREE q
Figure 2.3. R (u) in dependence on the polynomial degree q,slp

0 05 based on (2. 16). 7
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Table 2.2 and Figure 2.3 show that for large A, R (u) grows, but
q ,A

stays bounded (realize that we have used q = 100 leading to q = 10 and

d 1(100) = 0.17611 in Table 2.1). It is interesting to observe that for

fixed A, R (u) first increases and then decreases to 1. Hence Table 2.2

and Figure 2.3 suggest

-A2 (t+i)
Conjecture A. Let u0 = e Then u0 E 7(p) with p= 1 or

V(x) = log(x). In fact we have seen that for any A and any q in a
r%

practical range D

Rq A (u) -< 1.5.

2.6. The error estimates.

We have shown in previous sections that

IIU-Uq11X < C(q) in u-wjjX ,

where X = L (). Assuming that =

2 

/

k=0

we have

1/2

in£~in 1ju-wllx  
a_ C p q p (- 2)pd1k 

,
and hence we deal with the error in L2M oftermnrofxesinn

Legendre polynomials. There are many results which can be used here. For

more see also [6]. For example, using the standard results about Legendre and

Jacobi polynomials we have?

20
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where an explicit form for C(p) can be given. For example for %

-A2(t+l ) "
u--1-- e we get

(2.28) inf Jju-Wjjx : C1  .pqP ,-

If u is an analytic function on I then we get exponential rate of conver-

gence. Let us derive another estimate we mentioned above. Using Taylor's

formula we get "

(2.29) 1lu - wl x  : e2 2A2 q --1.

X q!'

We see that for large q or small X the rate is of order (q!)- 1.

2.7. Additional aspects.

we were interested in the error measured in the L 2- norm. Because we can

exchange the spaces S and V and still keeping the same properties of the

'

bilinexr form present, we can seek tbe finite element solution f the problem

(2.7) also in the form

2q

u(t) = C P Mkkt

k=O

u(--) t1aA

and determine the coefficients k-

In our analysis we have ssumed tht the solution u e X and it has no

trace and hence we cannot say anything wbout u(+). We can modify our

approach so that value of u(l) will be also the solution. To this end let

X[ I  XxR 1,  U N, (u, ), U E X, PL E RI

with the norm

21I



2 2 2 "
lu ll = + I %

x

and let be the space without the condition at t = 1 with the norm

11[ = II- .+ AvII [1]
Y A

and the bilinear form will be

B(u,p;v) u(= vdt +Al

which leads to a weak solution of the problem 2.7 with g = u(i).

We discussed only the case of single interval. It is possible to treat

also in an analogous way the case when the time interval is derived into sub-

intervals, etc. We will elaborate on these or similar problems in the future.

3. The p-version for the parabolic problem

3.1. Preliminaries and problem formulation.

Let Q c I2 be a bounded, Lipschitz domain with a piecewise analytic

boundary r. Let further D = IxQ, I = (-1,1). Then we will consider ti'e

problem

(3.1) a-Au = f on D

u = 0 on IxF

(3.2) u(-l,x) = g(x) on 0.

Let X = X(D) = L 2I ,H ()), where H (M) is the standard Sobolev

space, as well as H O() = 20) with

22
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V,.

_%

(3.3) lull2  = IVul2dx S.

and

1 1
Ill2= I u2

-1 H Cn]

By H 1 ( ) we denote the usual Sobolev space with the norm %4

I uvdxl 4-

(3.4) I HI - sup IlvIIH (9) v0 cl 1 1£i
VEH (52) H (0) %.

By we denote the space

) = {v e C(CD) I v(t,x) has for any t E I compact support

in Q and v(1,x) = W} .'

We denote by Y = Y(D) the completion of & in the norm

2F vIlIlI"_"

IIIl =J 2ll 1 + II 2 )dt,
- H- (Q) HC(D)

w h r v 8 v S _
where v . We have

Lemma 3.1. Let v E and V(t,x) be such that for any t E I, V E H C) (-
.

and "

(3.5) VV(t,x)Vzdx'= vzdx V z e H -).

Then

Ilvil -1 = 'l ,,

H ( ) H(D) 9)5

Proof. Obviously V(t,x) is uniquely determined by (3.5). We have then

23 S
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° w

I vzdxl I JVVVzdxI

vl = SUP l sup llzl - ,
ZE(z M ) HA(' ) ZEH ( ) H (n) H c ()

Hence we have

1

(363VIIJ 11i1 + l1vii 1 )dt,
J-1 H(5M) M)n

where V is defined by (3.5).

Let now (X.,uX), u .U E HI() be the eigenpair of the eigenvalue problem

-Au = A 2u. on Q-J J

u. = o on r.

J S

Then

Vu.Vzdx A 2 u zdx V z C (

01
and any u H (5) can be written in the form

and.

(3.7) u = u

i=l 4

with

2 2

u2 dx = a

IVul 2dx = 2 A

52 i=1'

Hence X = X(D) is the set of the functions of the form

u(t,x) = MY'O it)u(x)

24
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and

1 1=1l(3.8) Hlull 2 a 2 X2d +oo.,.

Further, it is easy to see that if v e) then ,.

(3.9a) v(t,x) = 1-) Wu (x)

with

(3.9b) 13i(1) = 0 I

and

11v11 2  2(t) I  dt.
Ii vii

H-1 () (

Hence

(3.10) llvll 22 2
ao 1 [ I -k2 ]

and Y co -:s of the set of functions of the form (3.9a,b) so that (3.10)

is finite.

Remark 3.1. Because R1 (t) I HM I), i = 1,2,..., 13i(1) exists for

i = 1,2 . .

Using now Lemma 2.1, we see that the norms

(3.11) llvll 2( (t) + 1i W A dt
-I i A2i

and

1d

2 1 )X2Idt
(3. 12) 11vii..~ ( + f Xi d

25



are equivalent.

Let us define on XxY the bilinear form

1 1

(3.13) B(u,v) = 1I(-ui+VuVv)dxdt = (-a + Aiai(3i) dt.

-1 1 ~~ii+AIi]t

(3.8) and (3.10) yield immediately that

(3 .14 I (u ,v )l -< 1 u ll x 11v llY

and using the same argument as in section 2.1 we get

(3.15a) inf sup IB(u,v)l > d > 0
uEX vEY

Illlx=l JIVII y-< :1

(3.15b) inf sup IB(u,v)l > d1 > 0.
vEY UEX

Let us now define problem P. Given F e Y' find u0 e X such hat
0 %"

(3.16) B(uoV) = F(v) V v E Y.

From (3.14) and (3.15) we have that problem 1' has unique solution for

any F e Y' and

where C does not depend on F.

It is also easy to show that the solution u0  of the problem P is a

weak solution of (3.1) and (3.2) with

F(v) = g(x)v(-l,x)dx+ ff(tx)v(t,x)dxdt

in the sense that if u0  is smooth and satisfies (3.1) and (3.2) then it

satisfies also (3.16).

~*.. .,.. 26-. .
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Remark 3.2. We restricted ourselves to the special case of Q2 with.

Lipschitz domain. We did it only for simpficity. For example in this section

no restrictive assumption on 0 has been made at all.

3.2. The semidiscrete problem. Discretization in x.

In this section we will consider the semidiscrete (in t) solution of

the problem P. Let R c H(n) be a finite dimensional subspace of functions

and

S = {u E X I u(t,x) E h V t e I>

V = {v E Y I v(t,x) e R V t E I.

Let u ES be such that 0
s

(3.17) B(uv) = F(v) V v e V.
sV

Then we will call u the semidiscrete solution of the problem P. In (3.4)
5

we have defined the norm lI( ) Let u e R, then we define
H 1 (0)

uvdxl2 - __

(3.18) lull H 2 sup lv

HR (Q) vER lm )

Obviously

(3.19) ull lull
Hlu (n) H (Q)

We will say that the space R has property X if there is a number R(R) < 1

such that 0

(3.20) lull R(R)ilull
H (Q) H (9)
R

holds for any u E R. S

Obviously H(R) depends on R. We will discuss it later.
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Let now AR,i URI R be the discrete eigenpair

Vu Vzdx = A2  zdx V z E R.

Then if u e S, Q(R)= dim R

Q(R)

u(t,x) = ( R, i x)

and

(3.21) H~ull M tA~ di'.

Further, let v e V

Q(R)

v(t,x) = W it)u, i(x)

1=1

and define

,,", 1 f 'Z ':21 >'< r,,,, ,,,: ,
-1 R= RI A3 ( ) ~ ) d 2 2,Ij i1 + 1 V 1 0YR J (A + R)H (- R, i -1 H HR (Q) HX (MJ

Because of (3.19) we have

(3.22) 11V11YR -< 11 ll V11.,

RR

and if R has property 3( then.'

(3.23) R(CR)llvlly~ -< IvllYR. tt,,,,

Analogously as in Section 3.1 we define

1 /

2R1 2

-1 R= R,i

28



then the norms I.YR and IHy are equivalent.

R

Theorem 3.2. Let R have property X, u e S, v e V. Then

1)

iI)

(3.25) inf sup IB(u,v)Il > C 2(R),
uES vEV 2

iii)

(3.26) sup IB(u,v)l > 0 V v E V, v * 0,
uES

IIuIIx=l

where C1 and C2 are independent of R.

Q(R)

Proof. (3.24) follows from (3.14) and (3.22). Let u E S, u = iURi'

Q(R)

v e V, v iuR, Then

Then

f. N.'

B(u,v) = R, A +A R ,3 dt..AR, i ' ' ,¢d"

Using the results of section 2, given u0 e S there exists v E V such

that

2
B(U,v) = Ilull

SP

and using equivalency of the norms Y and Y we get
R R '

B(u,v) I5ux YR
Hulll -Illxlly IVl > CllUll Y(R), ki

%!



which leads immediately to (3.25). (3.26) follows also easily as in

Section 2.

Using now Theorem 6.2.1 of [4] we get immediately

Theorem 3.3. Let R have property K, u0 and uS are the solutions of

(3.16) and (3.17), respectively. Then

C
lluo - U sl1 x  5 C inf+ lluo - wll x

wES

and C is independent of R. u

Let us now discuss the accuracy of us . We have
5

B(u0-usv) = 0 V v e V.

Write u = p+., p, c S, where p will be judiciously selected. Then we

get

B(g,v) = B(uo-P,V) V v E V

I

B(uo-P,v) JJ(-(Uo-P)+V(o-P)Vv)dxdt.
-10

Let us select p(x,t) = P u o(x,t), where P0  is L2-orthogonal projec-

tion of H M) onto R (for every fixed t). Then for any v E V

0B(Uo-P'v) = jJ Cl(V (uO-POuO )Vv)dxdt.

The bilinear form B(u,v) satisfies the conditions (3.24), (3.25), and (3.26)

without the property X if using the norm YR instead of Y. Because

M ul ( Uo-Po0Uo0)VV)dxdt :5 IlUo- Po0U Oi I vI V Y R
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we get

11911 x -< Clu o 0- Po0U olx ,

where C is independent of R. Hence we have

Theorem 3.4. Let u0 be the solution of the problem T. Then

I1us - Uolix -< CIJu 0 - P0 Uoix ,

where by P0 we denoted the L 2-orthogonal projection of X onto R without

assuming the property X.

3.3. The condition X and related results.

In the previous section we mentioned condition X of the subspace R.

We will now elaborate more on it. Let

(3.27) 9(R) = sup H (2) < +0
uER IUIL 2(Q)

(3.28) q(R) = sup llu- P UlL < +W

ue H 11)2

lull <
H (1)

(3.29) A(R) = sup IIU-PoU1lL2(0) < +0.

uEH' (Q)

11u 1 , n):5

, , and A depend on R. Here we denoted Pop resp. P1 , the L2-'

resp. HI-projection operator of H'(12) on R. We will call now R to be

(g, 1, A)-regular.

Theorem 3.5. Assume that R is (g,A)-regular. Then R has property X .0

and

R(R) _ (I+9n)

31



Proof. Let u E R. Then

fuvdxI
Hull 1 i su_____H() v i1() IIVII )

VEH (r2) H cM

and

lull~ 1c vdx I

IlR (9) V HR I fvllA)'

Hence, we have 0

lifuP1 vdxl if u(v-P 1v)dxl

Ilu ll -1 s sU lv 

H C VE M) HC() vEl M) H ()

< lull H 1 + ) (R)llullL 2(M
R

Next S
I uvdxl Ilull

if L mQ
ii ull - sup

HR vER )IIVllL (Q) (R)R 2

Hence

HIull
1lull 1

R

Theorem 3.6. Assume that R is (9,n,A)-regular. Then for any u E H (0l),
Hull = 1,

Alm

flu-PoUll {i - (1+ (R)+A(R)) (R).
0H 1 M)

Proof. We can write

u-P u -P 1 u+P 1 u-P u.

32



Hence

Iu-PouUl Al : ju-P luiI0  + (,(R)+A(R)) (R) :5 (I+q(R)+A(R)) (R). M(Cn) Hlcn)

Remark 3.3. In the above theorem we do not need to use operator P It is

enough to use any other one P1 with j(R) instead to n(R). Then Theorem

3.5 holds when n(R) is replaced by i(R). For example we can use some type

of an interpolation operator which in the case of unsmooth domain Q yields ;

j(R) < n(R). 0

The conditions (3.27) - (3.29) are closely related to the inverse proper-

ty and the duality principle in the theory of finite element method. Let us 1

mention here some known results.

i) Consider finite element method with a quasi-uniform mesh. Then

(R) : h C(p),

where h is the size of the element and C depends on p and the mesh but

is independent of h.

In the case of the p-version we have

(R) < p2Q

where Q depends on the mesh.

ii) Assuming that Q is smooth, or all its angles are 5 n, we have

n(R) 5 C(p)h

or

7(R) pQ.

iii) Finally without any additional assumption on the mesh we get

A(R) M Ch O-

33
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A (R ) C p -1

Remark 3.4. In this section we did not use any assumptions about 0 and its U.

dimension, except in the last part, where we listed the results about the

finite element space R.

Let us now analyze the p-version for the one-dimensional (in x) case.

Assume now that

Rp) = {u e HI) I u is a polynomial of degree p}.

Then we have (see e.g. [6])

(R) < Cp 
2

and the factor p2  is the best possible. Further we have S

-1'llu- P IVIIL2(1M - Cp-lli l i ,. I

2 H(IM

Hence we have

q(R) - Cp,

and

(3.30) If(R) Cp -
,

Similarly we get "-

(3.31) lu-P 0ul 1 Cplul .-O
0HI) H(I) ,

..Alm

Let us show now that (3.31) can be improved.

10

Lemma 3.7. Let s _> 0 Integer, u e H (1) and

I ([S~l])2(1x2)Sdx = A < +o,

where ON

.NI
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S

[s+i] - ds~'u

u dxS+ _ "

Then

(3.32) IJU-PouliI(1) : C(s)p-S+ (/2)A1/2.

Proof. We can assume that u is smooth because of density of smooth

functions. Assume that

U aM(P m+ -

m=1

where Pm are as before Legendre polynomials. Then

u' = am(2ml)Pm

m=1

and

p-1

P u = bP -P _ ).0 z m m+i r-i
m=l

For the sake of simplicity we will restrict ourselves to the case when u is

symmetric. The antisymmetric case can be treated similarly. In our symmetric

case we have bm = am = 0 for all m even. Let m = 2k-i, k = 1,2,...,k0,

k0 = , p even. Let us assume that b = a +z Because P is 0
0 2 m m m 0

L2-projection we have

1 ko

f Z2k-i p2k p2k-2)- 2k +1 p2k +2- 2k 0 I i+i_ i-i )d

This system leads to the following system of linear equations:

2 2

(2+2)z 2 z = 0 (i = 1)
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2 22 2 0 (13)
5 5 9 3- 95

2 +( 2 + 2 . 2 =0 (1= 2k-1)-4k---3 Z2 (k+l)-l 4k3- 4k+ 2k+i -4k- z2(k+l)-I

2 22

z + 2 2 )z 2 022k-I)4k'0-3 2ko-3 4ko-3k-T2o 2 0 1 k 2k- 0

This system can be solved explicitly to obtain

Z =-C k(2k-l)ak , k = ,.,k O  2k + 1 =p+I
2k-1 k 0  2k 0+1 ' 0

in which N'

- k4k 0 -3Ck=
k 3 2 _0 8k0+6ko-Sko-3 %

Hence we have

(u 2 2 ~ 2  20 2
:U - 0 ) z (4k-)+ 2 (4k-i) : Ca k Q,

2(I L Ma k1I 2k-1 2k-l + Q' 0J

k=l k=ko+1
0

where Q a (4k-i) and C is bounded from above and below indepen-
we =2k-I

k=k +1
0

dently of kO. Because of our assumption we have

1

(u = Za (2m+1)
-1m=l ..

and

£a2(2m+l) 1+2s :- C (u [S+ )2 (-x Sdx <- CA.

m=1 -1

Hence

)2 < CA(2k +1)-i-2s2ko+1 - 0!

36
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and
00S

X a 2  (4k-i) < Ck-2s

a2k- 1  0
k=k+1

Therefore

ju' - CP U)'II 2 C 5I) AN 1-2s .-2s
0 L2 M CA(k0  + 0

which yields (3.32).

By a similar procedure it is possible to show also that MNR) 2 p

Remark 3.5. In Lemma 3.7, we have assumed that s is an integer. We can

generalize the results by interpolation of weighted spaces, (see, e.g. [7])

for s nonintegers.

3.4. Numerical examples.

Consider now the problem (3.1), (3.2) with n2 I, f = 0 and
2

i) g(x) = l-x
11A,

ii) g2(x) = 1

Trxiii) g3(x) = Cos

Denoting u1 (t,x) the solution of our problem with the initial function g1

we can extend it antisymmetrically with respect to x = ±1 into a periodic

function defined on IxR. We will denote the extended function once more by

u1. Let now v 3 . Then v satisfies the equation
ax3

av a2v
t 2on RxI8t x2
ax

and

+00,

v(-1,x) = * -1)k(x-(2k+l))

k=-o

where 0 is the Dirac function. Hence,

37
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00 (x-(2k+1))2

v(t,x) C )7 1 (-l)k e t

and we get '

n v(tx)12(1x )2+n dxzt(-n/2)+(1/2)

dxx

and hence !] )

(3233) HU--P u 112 < Cp-(3/2+n)2 t(-n/2)+(1/2) 0
(3.33) 1u- 0 1 Ai p

By interpolation theory (3.33) holds not only for n integers but also for n

real. Hence we can choose n = 3-c and get 0
.--'p

(3.34) 1ul -P 0 u1lIx - C(C)p(4.5 -c) A

Similarly we get

-(n-1/2)2t (-n/2)-(1/2) .

2 -0 2 1 (Q)

and

(0.5 c0(3.35) 11u 2 -P0u211x _< C )p -

where in (3.34) and (3.35) c > 0 is arbitrary. In case iii) we obviously "

have -'.

2
it .

u3 (t,x) = cos-e

and hence

11U 3 -P-0u3 11  C(k)p
H (Q)

for arbitrary k > 0. Using the results from [6] we get
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(3.36) II u3 - P0u3II X 
< Crp

with r < 1 and C which can be estimated.

Applying ow theorem 3.4 together with the estimates (3.34), (3.35), and

(3.36) we get

(3.37b) Iju -u 1X < Cp(05C)
2,s 2 X

(3.37c) II u3 ,s - u3 II X < Cr p

with e > 0 arbitrary and r < 1.

Figure 3.1 shows the computed error of Iu. -u II in the log log
is iX

scale. Figure 3.1 also shows the slopes indicated by our estiamtes. We can

see a very good agreement for u1 and u3. In the case u2 the numerical
-12 -1/2

experiment seems to indicate a better result (rate p and not p- in

the computed range.

,'a
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6 7 8 9 10 20

0 -

W 1(y4

LJ 61K7O "- (a) - gl(x): -x2  4.5

_1 (b) g2 (x)I
.J (c) - g (x) cos -_n o- \(,c)_

+0-9+ I 
.

SPACE DEGREE P

I

Figure 3.1. The relative error for the semidiscrete method (discretization in
x) with the initial functions:

(a) gl(X) = 1-x 2. slope based on (3.37a);

(b) g2(x) = 1, slope based on (3.37b);

(c) g3 (x) = cos 
-x

3.5. The semidiscrete problem: Discretization in t.

In this section we will consider the case when we discretize the variable

t, while keeping x continuous. This is essentially the p-version of the

Rothe method (see [8]). Let

q-l(I) = {u e L 2(I) I u is a polynomial of degree q-1}

40



M(I) = v E L2(1) i v is a polynomial of degree q and v(1) = 0}.
q a

Define now

01 .

Sq Tq- xH(2)

q q
'1

Obviously S c X and V c Y, where X and Y are the spaces Introduced

q q
in section 3.1. For any u E Sq, resp. v E Vq, we have

I

u(t,x) = i M(t)u x)

i=l

where u. are the eigenfunctions as in section 3.1, with

.(t) E T
M q-1

and

v= zi(t)u.(x)

i=l

with

3.(t) E S..
1 q

The norms Iull X  and IIvll y are now given by (3.8) and (3.11). Defining the

bilinear forms B(u,v) on S xV by (3.13) we see that (3.14) holds. Using
q q

now Theorem 2.3 we get

inf sup IB(u,v)l 2 Cq- 1/ 2

vEV UES
q q

11vlly=l Illlx51

inf sup IB(u,v)l 2 Cq- 1/ 2

uES VEV
q q
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Hence we have

Theorem 3.8. Let u0 be the solution of the problem T and us  its semi-

discrete solution (discretization in t). Then

(3.38) Hu - Uo 11 - Cq1/ 2 inf flu-w x

q

-44
-

Theorem 3.9. Assume that f = 0 In the problem T and that the conjecture

A holds. Then

I

(3.39) Ius -uojll x X Cp(q) inf Iu-w1lX,
WES

q

where V = 1 or W(q) = log(q).

Let us remark that there are solutions of the problem P with f being

1/2rough so that the factor q in (3.38) is present. On the contrast if f

is smooth then (3.39) is applicable. Let us now consider the examples dis-

cussed in section 3.4. Obviously we can write

Co 2k-1 22

u(t,x) ake cos(2k-1) -

k=l

where

lakl -< ck- 3 for the.function u1

laki -< ck for the function u2

and

ak =0 k 2,3.... for the function u3.

Using now (2.28) we get
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inf Iu-wln < 2 k2a2(k n) 2n-
2q-2n

q k=1

and hence we can use for u 1 , n = 3-c and get

(3.40a) HlUl, S - U lli X :5 Cq - ( 2 - 0 )

analogously

(3.40b) Iu2, s u2 11X 
-5 Cq

-2.5+c -0.5+Cor possibly q and q If conjecture A holds and

(3.40c) Iu 3 ,s - u3 11x -5 Cq-k

for k arbitrarily large.
Figure 3.2 presents the computed error of Jlui,s-uiliX in the log log

scale. Figure 3.2 also shows the slope indicated by our estimates taking into

account our conjecture A. We can see a very good agreement for all cases.
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2 3 4 5 6 7 8910
0I

b-0.5

CN (a)3 -

W F2,5--10 -4 - _
-----gl(x)- I-xa

I0 -  gplx),,-\

IJ - g3(x)cos
Cr (C) U

10--\

10-87r i"

TIME DEGREE q

Figure 3.2. The relative error for the semidiscrete method (discretization in
t) with the initial functions:

-2 s

(a) g2(x I x , slope based on (3.40a) with conjecture A;

(b) g 2 W 1, slope based on (3.40b) with conjecture A;
(c) g3 (x) = COS -

3.5. The complete discretization.

In this section we will consider the general case when the discretization

in x and t has been made simultaneously. Let us define

S S(R,q) T xR

V V(R,q) = xR.
q U
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Now we obviusly have for u E S, v E V

(3.41a) IB(u,v)l <5 11U11 x 1Vl Y y-
m

'

and combining the results of previous sections we get

-1/2

(3.41b) inf sup IB(u,v)I -> CR(R)q-

ueS vVE

(3.41c) ina" sup IB~u,v)I - C3 (R)q" 2 .'

vEV uES -'

1lVlly= 1  IHull x -1

where C is independent of R and q. Hence we get

Theorem 3.10. Let u0  be the solution of the problem P and us E S be the

finite element solution

B(uv) =F(v) V v E V.
5

Then

_ <c1/2 ( 1-
lus -uolx  - (3fMR)) inf Ilu0-wlls

In the case that f = 0 we get

IHus -u0 11x - Cp(q) (f(R)) inf Ilu0 -w11
wES

where V(q) < 1 or V(q) < log(q) when the conjecture A holds.

Let us now proceed for another estimate. Denote T solution when the

variable t is discretized, while x is continuous. Let 11 p-uoI - C"

Proceeding as before we get now

s- 0 2 H 0 T 0
-H

and
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"T -O"T- - I-U ) - PO ( PT-Uo) + uo - P0u 0

Using now Theorem 3.6, we get 
it

J_ T IIJJ T 112JI1 dt C u P UII2 dt ~ 2 (1+ qcR)+AcR) ) cR)]2

1 i.1 0

and hence

lus -uolix < C(C 1 (1+(R)+A(R)) (R)+c 2)

where c is the error of the semidiscrete method (the discretization of t),

which was discussed in section 3.5 and c2 is the error of the semidiscrete

method (the discretization in x) which was discussed in section 3.2.

Let us consider now the numerical example we discussed earlier. In this

case we have

(1+n(R)+A(R))C(R) 5 Cp 1

but using Lemma 3.7 we can replace this term by Cp / 2 . hence we get

(3.42a) [ul -u 1 snx Cpl/2 (p-5++q
- 2 "5+)

(3.42b) I1u2 - Uu2,sl x : cp1/
2 (p- 1++q -0 .5+C)

/2-k -k S

(3.42c) H[u3 -u 3 5s 11 : Cp 1/2(p +q )

where c > 0, k < 0 arbitrary

The rates In q are Increased by 1/2 since the conjecture A has been

used. The estimates (3.42a,b,c) Indicate the optimal combination in q and %

p. Taking into account the fact that the computational work (i.e., number of

arithmetic operations) is proportional to qp , we can see that the optimal

choices are q - p2 in the first and second cases, and q - p in the last
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case. Using the estimate (3.42a,b,c) we get the optimal relationship between

the error and the work:

(3.43a) E = CW- for g(x) = 1-x 2

(3.43b) E = CW-0 .1 for g(x) = 1

(3.43c) E = CW-k
, k > 0 arbitrary for g(x) = cos 71-

Figures 3.3 - 3.5 present the performance of the complete discretization via
A..

p-version of the finite element method. Figures show the slopes indicated by

the functions given by (3.43a) and (3.43b). We can see a very good agreement

for u2  (Figure 3.4, numerical rate of convergence is slightly better than

the theoretical one) and for u3 (Figure 3.5). In the case (a), i.e., for

2
gl(x) = 1-x (Figure 3.3) the numerical rate of convergence is very close

to the theoretical one, but the best result is obtained for the combination

1.8 2
p [q instead of p = q .

-..

'p

.%k4

V..
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a. ...

0S
x. 10-3

q [pI'-

q- [p- -
-LJ q _ P2

0 L9

1000 0000 00000
WORK

Figure 3.3. The performance of the complete discretization via p-version of

the finite element method for various combinations between the

space degree p and the time degree q. The initial function is
2

91(x)= 1-x 2
. The slope is based on (3.43a).

0 •4
la.J - %ra, .

Ii -01\ I

LUI

.R%

.
q,,

000 0)000 100000
WORK

Figrure 3.4. The performance of the complete discretization via p-version of

the finite element method for various combinations between the S

p and q. The initial function is g (x) =1. The slope is
based on (3.43b).
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-qp

Figure 3.5. The performance of the complete discretization via p-version of,[

the finite element method for various combinations between p .
7rx •%and q. The initial function is g3(x) = Cos - N

3.7. Additi onal comments. ,

In section 2.6 we mentioned that the theory can be extended where compo- %
,A0i

site intervals are used. This, of course, can be applied here too. For [

example the estimate (3.42a) indicates that the refinement in the variable t e

would be advantageous. 
.',

We have assumed that the discretization in x is the same for all '

t e I. If I Is partitioned Into I. then also discretization in x can be

different for various I X Then we get the h-p version for parabolic equa- [ '.,

tion. These and analogous questions will be discussed in forthcoming papers.

49 !r



w

References

I] Mackerle, J., MAKABASE, An information system on structure mechanics S
software and applications, Adv. Eng. Software 8 (1986), 81-87.

(2] Mackerle, J., MAKABASE, An On-line Information Retrieval System of Struc-
tural Mechanics, Computers and Structures 24 (1986), 977-983.

[3] Babuska, I., The p and h-p versions of the finite element method, The
State of the Art Proc. of the Workshop on Finite Element Method, NASA
Langley and R. Voigt, Springer 1988, 199-239.

[4] Babuska, I., Aziz, A.K., Survey Lectures on the Mathematical Foundations
of the Finite Element Method in The Mathematical Foundations of the
Finite Element Method with Applications to Partial Differential
Equations, ed. A.K. Aziz, Academic Press, New York, London, 1972, 3-363.

[51 Arnold, D.N., Babuska, I., Osborn, J., Finite Element Methods, Principles
for Their Selection, Comp. Math. Appl. Mech. __ 45 (1984), 57-96.

(6] Gui, W., Babuska, I., The h, p and h-p version of the finite element
method in 1 dimension, Part I, Part II, Numer. Math. 49 (1986),
577-612, 613-657.

[7) Triebel, H., Interpolation Theory. Functions Spaces, Differential
Operators, North-Holland, Amsterdam, New York, Oxford, 1978.

[8] Rektorys, K., The Method of Discretization in Time, D. Reidel Publishing
Co., Dordecht, Boston, London, 1982.

Ile

soI



The Laboratory for Numerical analysis is an integral part of the %
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals: 0

o To conduct research in the mathematical theory and computational
implementatiorn of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applie-d
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

" To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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